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Periodic photonic structures can provide rich modulation in propagation of light due to well-defined band structures.
Especially near band edges, light localization and the effect of near-zero refractive index have attracted wide attention.
However, the practically fabricated structures can only have finite size, i.e., limited numbers of periods, leading to changes
of the light propagation modulation compared with infinite structures. Here, we study the size effect on light localization
and near-zero refractive-index propagation near band edges in one-dimensional periodic structures. Near edges of the
band gap, as the structure’s size shrinks, the broadening of the band gap and the weakening of the light localization are
discovered. When the size is small, an added layer on the surface will perform large modulation in the group velocity.
Near the degenerate point with Dirac-like dispersion, the zero-refractive-index effects like the zero-phase difference and
near-unity transmittance retain as the size changes, while absolute group velocity fluctuates when the size shrinks.

Keywords: one-dimensional (1D) photonic crystal, finite-size effect, band gap, light localization, zero-
refractive-index effect
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1. Introduction
Manipulation of light using periodic photonic structures

is of fundamental interest and has attracted much research
attention.[1–6] The Bragg scattering induced by the periodic-
ity gives rise to well-defined photonic band structures, show-
ing strong modulation on light propagation in structures. Near
band edges, many intriguing effects are studied such as pro-
hibited propagation,[3,7] light localization,[8,9] and near-zero
refractive index,[10,11] etc.

Due to multiple scatterings from regions of different di-
electric materials, photonic band gap appears between two
band edges.[7] For frequencies among the band gap, the light
is prohibited to propagate in structures. Near edges of the
band gap, the photonic band shows a near-zero gradient, i.e., a
near-zero group velocity, leading to the light localization.[12]

For special parameters, the multiple scatterings can be coun-
teracted, and the band gap close to be accidentally degener-
ate. Around the degenerate point, the band has the Dirac-
like dispersion and the zero-refractive-index effect can be
achieved.[13–15] These effects of light propagation modula-
tion have been widely studied and applied in filtering,[7] con-
fining light,[16] and enhancing light–matter interaction,[17–19]

etc. It is noted that these light propagation modulation ef-
fects are usually proposed and discussed based on photonic
band structures, which are strictly defined in periodic photonic
structures, i.e., infinite structures. In theoretical studies, peri-
odic boundary conditions can be adopted to match the require-

ment of periodicity. However, experimentally prepared struc-
tures are always finite, leading to the finite number of periods
and inevitably causing some changes for the light propagation
modulation in photonic structures.[20–23] A question how the
light propagation modulation properties vary when the struc-
ture changes from the infinite to the finite arises. The study
on the size effect is to depict the change of optical properties
when the finite structure’s size varies. For one-dimensional
(1D) structures, there have been numerous studies on the opti-
cal properties when the size of the structures varies. The num-
ber of the hole rings[24] and the core size[25,26] were changed
to optimize the properties of the photonic crystal fibers, and
two 1D finite structures contacted together show the robust-
ness of the interface states when the size varies.[27] However,
to date the size effect of the modulation properties of photonic
structures has still not been fully discussed.

In this work, we study the size effect of light propagation
near the band edges in 1D periodic structures. The broadening
of the effective band gap is observed when a structure becomes
small. Then the group velocity is introduced to discuss the
light localization modulation near edges of the band gap. As
the structure’s size shrinks, the group velocity increases, cor-
responding to the weakening of light localization. When the
size is small, a layer added on the surface will perform a rela-
tively large modulation in the group velocity. For the degener-
ate point with Dirac-like dispersion, the zero-refractive-index
effects like zero phase difference and near-unity transmittance
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keep unchanged as the structure’s size varies, while the corre-
sponding group velocity fluctuates when the size shrinks.

2. Results and discussion
The size effect is discussed in the 1D periodic structure,

as shown in Fig. 1(a). The unit cell consists of two differ-
ent layers. For layer A, the refractive index nA is 1.45 and the
thickness dA is 289.7 nm. For layer B, the refractive index nB is
2.1 and the thickness dB is 200 nm. By using the transfer ma-
trix method,[28] the equation of the band structure is derived
as
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where k, d, ω , and c refer to the Bloch wave vector, the pe-
riod of the structure, the angular frequency, and the speed of
light in vacuum, respectively. It is noted that optical paths of
two layers are set to be equal to each other, i.e., nAdA = nBdB,
hence the band gap and degenerate point with Dirac-like dis-
persion can be discussed in the same structure. As is shown in
Fig. 1(b), a band gap is observed at the boundary of the first
Brillouin zone, and a degenerate point (marked by red dot)
with Dirac-like dispersion is observed at the center of the Bril-
louin zone.
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Fig. 1. (a) Schematic of the 1D periodic structures. (b) The photonic
band structure. The red point marks a degenerate point. (c) The derived
absolute group velocity.

Figure 1(c) shows the absolute value of the group veloc-
ity |vg|, from which the propagation features like localization
can be analyzed. In the band gap, the light propagation is pro-
hibited, hence the |vg| is ill-defined. When close to the band
edges from the outside of the band gap, we can see that the
|vg| decreases rapidly and becomes zero at band edges, indicat-
ing that the light propagates slowly near band edges and gets
strongly localized at band edges. Diversely, near the degener-
ate point with Dirac-like dispersion, |vg| remains at a non-zero
value and keeps nearly-unchanged. This can be understood
from the linear dispersion relation, which would also lead to
the zero-refractive-index effect.[10,11,13–15] Up to now, all these
properties are discussed based on well-defined band structures
of infinite structures. To discuss how light propagation modu-
lation properties change when the structures become finite, the
finite-size simulations are further performed.

The finite-difference time-domain method is employed to
study light propagation in structures with finite size in both
frequency and time domains. The size of the 1D structures is
characterized by the number of layers (N). For the frequency
domain, the transmittance spectra and the intensity distribu-
tions of electric field can be calculated. For the time domain,
the group velocity can be obtained as follows:[29,30] A light
pulse with 2-nm full width at half maximum is simulated to
pass through the finite structure and the vacuum of the same
distance respectively. Then the time delay can be extracted by
comparing the time difference of these two pulses, from which
the group velocity of light propagating in the structures can be
obtained.
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Fig. 2. Transmittance spectrum of the structure with 600 layers. The
red point marks the effective band edge. (b) The band edges of differ-
ent N. (c) The width of the band gap with different N. ∆w denotes the
bandgap width, and the blue line represents the width of band gap of the
infinite photonic structure. (d) Group velocity near edges of the band
gap. The orange dots represent the group velocity at the band edges.
(e) Group velocity at the band edge of the structures. The left and the
right panels show the group velocity at the short-wavelength and the
long-wavelength edges, respectively. N denotes the number of layers.

Figure 2(a) shows the transmittance spectrum near the
long-wavelength edge when N is 600. The transmittance ex-
hibits large fluctuations. In the band gap, the transmittance
decreases to be zero due to the prohibited propagation. As
indicated by the red point, the effective band edge is chosen
when the transmittance is 0.01. Figure 2(b) plots the evolution
of effective band edges with changing N. The slight narrowing
of the band gap is observed with increasing N. To get a deeper
insight into the change of the band gap, the widths of the band
gap (∆w) are shown in Fig. 2(c). As N increases, the width
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of the band gap approaches the calculation by the transfer ma-
trix. This decreasing difference between the two widths of the
band gap can represent the smaller difference between the fi-
nite structures and the infinite ones. Then, Fig. 2(d) presents
the group velocity near band edges of finite structures with
different N. For each N, group velocity decreases when the
wavelength approaches close to the band gap, while the group
velocity shows larger fluctuations for structures with smaller
N. Furthermore, Fig. 2(e) plots the group velocity at defined
effective band edges. It could be seen that the group velocity
decreases as the structure’s size increases and approaches to a
nearly unchanged minimum value. It should be mentioned that
the non-zero minimum is due to the non-zero frequency width
of the simulated pulses. As we can see, the calculated group
velocity is far less than the light velocity in vacuum, showing
the light localization modulation at band edges. The light is
more localized at band edges for structures with more layers.

To gain a deeper insight into the light localization at band
edges, we calculated the intensity distributions of the electric
field at effective band edges in structures of different N consid-
ering a monochromatic incident light, as shown in Figs. 3(a)
and 3(b). The left, middle and right panels correspond to the
structures whose N are 100, 200, and 600. For comparison,
the intensity distribution are all exhibited within 15 µm from
the incident surface, while the intensity distribution of entire
structures are shown in the inset of each panel. For the largest
structures with 600 layers, the intensity decays exponentially
from the incident boundary, showing obvious localization be-
havior. In contrast, for structures with smaller N, the intensity
decay more slowly, indicating weaker localization modulation.
The results are in accordance with the group velocity discus-
sions in Fig. 2(d).

When structures become finite, the backward-
propagating waves by the other boundary would also influence
the total light propagation modulation. The boundary effect
was studied by considering an added layer on incidence sur-
face. As is illustrated in the inset of Fig. 3(c), the added layer
is firstly a layer with refractive index nB and the thickness
varying from 0 to dB, then another layer with the refractive
index nA and the thickness varying from 0 to dA. Figure 3(c)
shows that the group velocities at the short-wavelength (black
dots) and the long-wavelength (red dots) band edges. It could
be seen that the group velocity in the structure of a smaller size
exhibits a larger variation with the varying added layer. This
boundary effect is an evident difference between the finite
and the infinite structures. The added layer could be consid-
ered as an additional degree of freedom to modulate the light
propagation for structures of a small size.
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Fig. 3. Intensity distributions of the electric field at (a) the short-
wavelength and (b) the long-wavelength edges of the band gap. The
insets show the intensity distributions inside the entire structures, and
the main figures are the zoom-in views of the shadow areas of the in-
sets. (c) Group velocity at the short-wavelength (black dots) and the
long-wavelength (red dots) band edges with the change ∆d on the sur-
face. The inset shows the schematics when ∆d is 0, dB and dA +dB. N
of the structures in the left, the middle and the right panels are 100, 200
and 600, respectively.
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Fig. 4. (a) Transmittance spectra of structures of different N. (b) Phase dif-
ferences ∆Φ between the top and the bottom surfaces in one unit cell with
different N. The red dots and the dashed line indicate the zero phase dif-
ference at 0.842 µm. (c) Group velocity of the structures with different N.
The red dots show the group velocity at 0.842 µm. (d) Group velocity at the
degenerate point of the structures with different N.

Further, the size effect around the degenerate point
with Dirac-like dispersion is discussed. For the ideal zero-
refractive-index material, the near-unity transmittance and
zero phase difference are enabled by the zero effective refrac-
tive index.[10,11] Figure 4(a) shows the transmittance spectra
of varying N. It can be seen that as the near-unity transmit-
tance (red dashed line) is maintained, and the wavelength is in
accordance with that of the degenerate point in Fig. 1(b). Then
we calculated the phase difference between two boundaries of
a unit cell, as is shown in Fig. 4(b). The zero phase difference
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is kept to be unchanged despite the varying N. For the degen-
erate point with Dirac-like dispersion, these zero-refractive-
index effects shows little difference between the finite and the
infinite structures. In addition, the group velocity are also sim-
ulated, as is shown in Fig. 4(c). Similar to the results near
the band gaps, the group velocity exhibits obvious fluctuations
when N is small. The group velocity at the degenerate point is
plotted in Fig. 4(d). With increasing N, the group velocity ap-
proaches to a non-zero value of 0.57c. This value agrees well
with the calculated group velocity of the infinite structures in
Fig. 1(c).

3. Conclusion
In summary, the size effect of light propagation modula-

tion in 1D periodic structures is studied. The light propaga-
tion modulation properties vary when the structures become
finite. As the structure’s size shrinks, near band edges of the
band gap, the light localization weakens, and the boundaries
of the finite structure perform an obvious modulation on the
total group velocity in structures. For the degenerate point
with Dirac-like dispersion, the zero-refractive-index effect like
near-unity transmittance and zero phase difference keep un-
changed in finite structures with the varying size, while the
group velocity suffers fluctuations when size is small. The re-
sult reveals that the light propagation modulation properties,
especially the group velocity modulation in periodic struc-
tures, get changed when the periodic structure’s practical size
becomes finite. It also reminds that the finite size effect should
be considered when the periodic structures with the actually fi-
nite size are practically applied.
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[14] Li Y, Kita S, Muñoz P, Reshef O, Vulis D I, Yin M, Lončar M and
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